Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

4-Chloro-N-(trimethylammonio)benzamide chloride monohydrate

Kenneth W. Muir,* David G. Morris and Cindy Ong Woei Chii

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland Correspondence e-mail: ken@chem.gla.ac.uk

Received 5 December 2003 Accepted 19 December 2003 Online 17 January 2004

The structure of the cation in the ylide hydrochloride $[\text{Me}_3\text{NNHC}(O)C_6H_4\text{-Cl-}p]\text{Cl·}H_2O$, or $C_{10}H_{14}\text{ClN}_2O^+\text{-Cl^-}$ H2O, is compared with that of the free ylide. Protonation lengthens the $N-C(O)$ bond but shortens the C= O and N $-$ N bonds by ~ 0.03 Å and increases the dihedral angle between the phenyl and ylide planes.

Comment

The structures of trimethylammonio-nitrogen ylides, $Me₃N(+)$ - $N(-)X$, (I), are known for many of the common electronwithdrawing stabilizing groups X, such as $C(O)C_6H_4-Cl$ -p [(Ia); Morris et al., 2003], $P(O)Ph_2$ [(Ib); Muir et al., 1999], SO₂Tol $[(Ic)$; Cameron *et al.*, 1976], C₆Cl₃N₂ $[(Id)$; Kartsev *et al.*, 1994], C(O)Ph $[(Ie)$; Cameron *et al.*, 1972] and NO₂ $[(If)$; Smith et al., 1997; Cameron et al., 1972]. These compounds are bases and form hydrochlorides $[Me_3N-NH-X]^+$ ·Cl⁻, (II). In the course of studying the ability of nitrogen ylides, (I), to act as ligands (Morris *et al.*, 2003), we were surprised to find that there is no structural example of a corresponding hydrochloride, (II) [QUEST and CONQUEST search programs were used with Version 5.24 of the Cambridge Structural Database (Allen, 2002; 272 066 entries, November 2002) to obtain results not otherwise accessible]. Accordingly, we report here the structure of (IIa) $[X = C(O)C_6H_4-CI$ -p and compare it with that of its parent ylide, (Ia).

Crystals of (IIa) contain equal numbers of $[Me₃NNH C(O)C_6H_4$ -Cl- p ⁺ cations, Cl⁻ anions and water molecules. Conventional hydrogen bonds link the Cl^- anions and water molecules into infinite chains (Fig. 1 and Table 2) running

A view of (IIa), with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are shown as broken lines.

along b ; each water molecule bridges Cl^- ions related by the operation of a 2_1 screw axis. An N-H \cdots O hydrogen bond links each cation to a chain. The structure also contains $C-$ H···Cl hydrogen bonds $\left[Cl\cdots Cl1^{ii} = 3.611 (2) \text{ Å} \text{ and } C3 \cdots \right]$ Cl1ⁱⁱⁱ = 3.703 (2) Å; symmetry codes: (ii) $1 - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (iii) $1 + x$, y, z and $\pi - \pi$ interactions between interleaved phenyl rings (see Fig. 2), which lead to several short $C \cdots C$ contacts, the shortest being $C_6 \cdots C_8$ ^{iv} [3.308 (2) Å; symmetry code: (iv) $2 - x$, $1 - y$, z] and $C8 \cdot C10^{v}$ [3.346 (2) A; symmetry code: (v) $1 - x$, $1 - y$, $-z$. Except for the C1– $H \cdots C11^{ii}$ hydrogen bond, these interactions link different chains together.

Protonation of (Ia) at atom N1 causes only minor changes in conformation and bonding. The $N1-C4-C5-C6$ torsion angle opens from -5.1 (2)^o in (Ia) to -21.17 (18)^o in (IIa), thereby relieving the intramolecular $H1 \cdots H6$ contact (2.23 Å) . In (IIa), atoms Cl2 and C4–C10 are coplanar to within 0.008 (1) A, and the sequence $C3-N2-N1-C4-C5$ is nearly planar, with torsion angles across $N2-N1$ and $N1$ C4 of 179.31 (11) and -176.70 (11)^o [Table 1; *cf.* 178.7 (1) and

Figure 2 A view of the unit-cell contents (H atoms have been omitted).

 -179.7 (1)^o in (Ia)]. The N1–C4 and C4–O1 bond lengths in (IIa) [1.3739 (18) and 1.2212 (17) \AA] are, respectively, longer and shorter than the corresponding values in (Ia) [1.338 (2) and 1.258 (2) \AA] and (Ie) [1.313 (6) and 1.243 (5) \AA], indicating less delocalization across the $N-C$ bond in the hydrochloride, though rehybridization at atom N1 may also be significant (see below). More surprisingly, given the larger coordination number of atom N1 in (IIa) , its N1 $-N2$ bond [1.4469 (16) A] is shorter than the value in (Ia) [1.474 (2) A]. The N $-N$ bonds in (Ia)–(If) fall in the narrow range 1.470– 1.476 A, except for the value in (Ib) [1.450 (4) A]. The N2 $-$ N1 $-C4$ angle in (IIa) [119.73 (11)^o] is more obtuse than the angles in (Ia) [113.5 (1)^o] and (Ie) [114.2 (3)^o]. A change in the hybridization at atom N1, so that it contributes more s character to the N1 $-N2$ and N1 $-C4$ bonds of (IIa) than to the corresponding bonds of (Ia), would explain these trends. Although the $Me₃N(+)NHCH₂CH₂CO₂⁻$ zwitterion is formally analogous to (II), its three-coordinate N atom is linked to the unsaturated $-CO_2$ ⁻ group through a fully saturated C atom, resulting in marked differences in coordination $(N-N = 1.491 \text{ Å}, N-C = 1.444 \text{ Å} \text{ and } N-N-C = 113.9^{\circ};$ Kemme et al., 1983; Allen, 2002) from (IIa).

The atomic U^{ij} values are moderately well reproduced by a **TLS** analysis (Schomacher & Trueblood, 1968) $[R_2 = (\Delta U^2/\Delta U^2)]$ U^2 ^{1/2} = 0.13]; they also pass the Hirshfeld (1976) rigid-bond test, the worst discrepancy being $\Delta U = 0.0021$ (8) \mathring{A}^2 for C4 O1.

Experimental

An aqueous solution of the parent ylide was prepared according to the method of Morris et al. (2003). It was then added to an equimolar quantity of $0.1 M$ HCl. The resulting solution was concentrated by heating in a rotary evaporator; crystals of the title compound precipitated on cooling.

Crystal data

160 parameters

refinement

H atoms treated by a mixture of independent and constrained

 $\Delta \rho_{\rm min} = -0.29$ e ${\rm \AA}^{-3}$

Table 1

Selected geometric parameters (\mathring{A}, \degree) .

Table 2

Hydrogen-bonding geometry (\mathring{A}, \degree) .

Symmetry code: (i) $1 - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$.

H atoms bonded to atoms $N1$ and $O1W$ were refined freely. The positions of the other H atoms were finally determined using riding constraints assuming C $-H$ bond lengths of 0.95 and 0.98 Å, respectively, for Csp^2 and Csp^3 atoms. For each methyl group, a single orientation parameter was also refined.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; structure solutoin: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the EPSRC and Glasgow University for support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1295). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Cameron, A. F., Duncanson, F. D. & Morris, D. G. (1976). Acta Cryst. B32, 1987±1990.
- Cameron, A. F., Hair, N. J. & Morris, D. G. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 1071-1076.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
- Kartsev, V. G., Gizatullina, E. M., Aliev, Z. G., Talipov, S. A. & Nabatov, A. S. (1994). Khim. Geterotsikl. Soedin. SSSR (Chem. Heterocycl. Compd), p. 505.
- Kemme, A. A., Bleidelis, Ya. Ya., Kalvin'sh, I. Ya. & Eremeev, A. V. (1983). Latv. PSR Zinat. Akad. Vestis Kim. Ser. p. 215.
- Morris, D. G., Muir, K. W. & Chii, C. O. W. (2003). *Polyhedron*, **22**, 3345-3353. Muir, K. W., Morris, D. G. & Innes, V. (1999). Croat. Chem. Acta, 72, 511-518.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Schomacher, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Smith, G. T., Mallinson, P. R., Frampton, C. S. & Howard, J. A. K. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 1329-1338.